Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K+ channels.

نویسندگان

  • Hong-Shuo Sun
  • Zhong-Ping Feng
  • Takashi Miki
  • Susumu Seino
  • Robert J French
چکیده

Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, incorporating Kir6.x and sulfonylurea receptor subunits, are weak inward rectifiers that are thought to play a role in neuronal protection from ischemic insults. However, the involvement of Kir6.2-containing KATP channel in hippocampus and neocortex has not been tested directly. To delineate the physiological roles of Kir6.2 channels in the CNS, we used knockout (KO) mice that do not express Kir6.2. Immunocytochemical staining demonstrated that Kir6.2 protein was expressed robustly in hippocampal neurons of the wild-type (WT) mice and absent in the KO. To examine neuronal sensitivity to metabolic stress in vitro, and to ischemia in vivo, we 1) exposed hippocampal slices to transient oxygen and glucose deprivation (OGD) and 2) produced focal cerebral ischemia by middle cerebral artery occlusion (MCAO). Both slice and whole animal studies showed that neurons from the KO mice were severely damaged after anoxia or ischemia, whereas few injured neurons were observed in the WT, suggesting that Kir6.2 channels are necessary to protect neurons from ischemic insults. Membrane potential recordings from the WT CA1 pyramidal neurons showed a biphasic response to OGD; a brief hyperpolarization was followed by a small depolarization during OGD, with complete recovery within 30 min after returning to normoxic conditions. By contrast, CA1 pyramidal neurons from the KO mice were irreversibly depolarized by OGD exposure, without any preceding hyperpolarization. These data suggest that expression of Kir6.2 channels prevents prolonged depolarization of neurons resulting from acute hypoxic or ischemic insults, and thus protects these central neurons from the injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein kinase C isoform-dependent modulation of ATP-sensitive K+ channels in mitochondrial inner membrane.

The ATP-sensitive K(+) (K(ATP)) channels in both sarcolemmal (sarcK(ATP)) and mitochondrial inner membrane (mitoK(ATP)) are the critical mediators in cellular protection of ischemic preconditioning (IPC). Whereas cardiac sarcK(ATP) contains Kir6.2 and sulfonylurea receptor (SUR)2A, the molecular identity of mitoK(ATP) remains elusive. In the present study, we tested the hypothesis that protein ...

متن کامل

ATP-sensitive K+ channel knockout compromises the metabolic benefit of exercise training, resulting in cardiac deficits.

Exercise training elicits a metabolic and cardiovascular response that underlies fitness. The molecular mechanisms that orchestrate this adaptive response and secure the wide-ranging gains of a regimented exercise program are poorly understood. Formed through association of the Kir6.2 pore and the sulfonylurea receptor, the stress-responsive ATP-sensitive K(+) channels (K(ATP) channels), with t...

متن کامل

ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue.

ATP-sensitive potassium (K(ATP)) channels are known to be critical in the control of both insulin and glucagon secretion, the major hormones in the maintenance of glucose homeostasis. The involvement of K(ATP) channels in glucose uptake in the target tissues of insulin, however, is not known. We show here that Kir6.2(-/-) mice lacking Kir6.2, the pore-forming subunit of these channels, have no ...

متن کامل

Ischemic preconditioning in the hippocampus of a knockout mouse lacking SUR1-based K(ATP) channels.

BACKGROUND AND PURPOSE ATP-sensitive K+ (K(ATP)) channels have been implicated in the mechanism of neuronal ischemic preconditioning. To evaluate the role of neuronal/beta-cell-type K(ATP) channels, SUR1 null (Sur1KO) mice lacking (K(IR)6.x/SUR1)(4) K(ATP) channels were subjected to a preconditioning protocol with the use of double carotid occlusion. METHODS Wild-type C57BL/6 and Sur1KO mice ...

متن کامل

Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure.

Adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channels are activated by various metabolic stresses, including hypoxia. The substantia nigra pars reticulata (SNr), the area with the highest expression of K(ATP) channels in the brain, plays a pivotal role in the control of seizures. Mutant mice lacking the Kir6.2 subunit of K(ATP) channels [knockout (KO) mice] were susceptible to gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 4  شماره 

صفحات  -

تاریخ انتشار 2006